
2019-10-09

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Floating-point
primitive data types

2
Floating-point primitive data types

Outline

• In this lesson, we will:

– Review what we have seen about floating-point numbers

– Review scientific notation

– Consider storing approximations of real numbers using fixed
precision scientific notation

– Consider some simple examples of arithmetic

– Look at some weaknesses

– Describe IEEE754

3
Floating-point primitive data types

Floating-point numbers

• Up to this point, we have used the double data type for storing
approximation of real numbers

– The name is short for double-precision floating-point data type

• There is also a single-precision floating point data type: float

• Each only stores approximations of real numbers

– The former with approximately twice as much precision

4
Floating-point primitive data types

Scientific notation

• Recall from secondary school scientific notation that allows us to
write numbers clearly and succinctly:

Conventional notation Scientific notation

0.0000000000667408 6.67408 × 10–11

299792458 2.99792458 × 108

0.0000000000000000000000000000000006626070040 6.626070040 × 10–34

0.00000000000000000016021766208 1.6021766208 × 10–19

8.3144598 8.3144598 × 100

3.14159265358979323 3.14159265358979323 × 100

6.67408 × 10–11

Mantissa

Exponent

Base

2019-10-09

2

5
Floating-point primitive data types

Scientific notation

• The number of decimal digits used is the precision:

Scientific notation Precision

6.67408 × 10–11 6

2.99792458 × 108 9

6.626070040 × 10–34 10

1.6021766208 × 10–19 11

8.3144598 × 100 8

3.14159265358979323 × 100 18

6
Floating-point primitive data types

Scientific notation

• Without going into detail, each data type has an approximate
maximum precision it can store

• There is generally only one situation where float has acceptable
precision for engineering applications:

– Computer graphics

Data type
Approximate

maximum precision
(decimal digits)

float 7

double 16

7
Floating-point primitive data types

Scientific notation

• How could you store a floating-point number?

– Store the exponent and mantissa separately, and assume a decimal
point comes after the first digit

Scientific notation
Representation*

float Double

6.67408 × 10–11 + -11 6674080 + -011 6674080000000000

2.99792458 × 108 + 08 2997925 + +008 2997924580000000

6.626070040 × 10–34 + -34 6626070 + -034 6626070040000000

1.6021766208 × 10–19 + -19 1602177 + -019 1602176620800000

8.3144598 × 100 + 00 8314460 + 000 8314469800000000

3.14159265358979323 + 00 3141593 + 000 3141592653589793

• In reality, these are stored in binary
– do not memorize this format
– remember they are stored using scientific notation…

8
Floating-point primitive data types

Scientific notation

• This fixed precision leads to some weaknesses

– If the exponent is too large, the number cannot be stored

– There are special values for ±∞ for numbers too large to represent

– There are other values for NAN (not-a-number) to represent

calculations such as 0.0/0.0 and ∞ – ∞

– Numbers too small are represented by 0.0

Data type Minimum Maximum

float ± 1.401 × 10–45 ± 3.403 × 1038

double ± 4.941 × 10–324 ± 1.798 × 10308

2019-10-09

3

9
Floating-point primitive data types

Weaknesses

• This fixed precision leads to some weaknesses

– It can happen that x + y = x even if y ≠ 0

– The calculation x – y can be problematic if x ≈ y

– Even associativity is lost: sometimes x + (y + z) ≠ (x + y) + z

• We will look quickly at these

– In your courses on numerical analysis you will learn how to mitigate
or avoid these weaknesses

10
Floating-point primitive data types

Weakness: x + y = x even if y ≠ 0

• Non-zero numbers act like zero

– Suppose we add these two numbers:

– Calculating this:

– The representation of this sum is

– There is no difference…

+ +000 3141592653589793
+ -019 5749522264293560

3.141592653589793

+ 0.0000000000000000005749522264293560

3.1415926535897930005749522264293560

+000 3141592653589793



42e

11
Floating-point primitive data types

Weakness: x + y = x even if y ≠ 0

• For example:
#include <iostream>

#include <cmath>

int main();

int main() {

std::cout.precision(17); // Print floating-point numbers to 17 digits of precision

double x{std::acos(-1.0)};

double y{1e-10};

double z{x + y};

std::cout << " Pi + 1e-10 = " << z << std::endl;

std::cout << "(Pi + 1e-10) - Pi = " << (z - x) << std::endl;

std::cout << std::endl;

y = 1e-16;

z = x + y;

std::cout << " Pi + 1e-16 = " << z << std::endl;

std::cout << "(Pi + 1e-16) - Pi = " << (z - x) << std::endl;

return 0;

}

Pi + 1e-10 = 3.1415926536897931
(Pi + 1e-10) - Pi = 1.000000082740371e-10

Pi + 1e-16 = 3.1415926535897931
(Pi + 1e-16) - Pi = 0

12
Floating-point primitive data types

Weakness: subtractive cancellation

• Subtraction results in a loss of precision

– Suppose we subtract these two numbers:

– Calculating this:

– The representation of this sum is

– The correct answer is 5.403023058680976 × 10–14

+ -001 8414709848079505
+ -001 8414709848078965

0.8414709848079505

0.8414709848078965

0.0000000000000540



+ -014 5400000000000000

 sin 1.0000000000001

 sin 1

2019-10-09

4

13
Floating-point primitive data types

Weakness: subtractive cancellation

• We can define the derivative of sin(x) at x = 1:

• Thus, in theory, as h gets smaller and smaller,

should be a better and better approximation

 
   

0

sin 1 sin 1d
sin 1 lim

d 2h

h h

x h

  


   sin 1 sin 1

2

h h

h

  

14
Floating-point primitive data types

Weakness: subtractive cancellation

• Let’s try this in C++:
#include <iostream>

#include <cmath>

int main();

int main() {

std::cout.precision(17);

double h{1e-10};

std::cout << "Calculating the derivative of sin(x) at x = 1:" << std::endl;

std::cout << " cos(1) = " << std::cos(1.0) << std::endl;

double dsin1{(std::sin(1.0 + h) - std::sin(1.0 - h))/(2*h)};

std::cout << "When h = " << h << ", " << dsin1 << std::endl;

h = 1e-15;

dsin1 = (std::sin(1.0 + h) - std::sin(1.0 - h))/(2*h);

std::cout << "When h = " << h << ", " << dsin1 << std::endl;

return 0;

}
Calculating the derivative of sin(x) at x = 1:

cos(1) = 0.54030230586813977
When h = 1e-10, 0.54030224738710331
When h = 1.0000000000000001e-15, 0.55511151231257827

   sin 1 sin 1

2

h h

h

  

15
Floating-point primitive data types

IEEE 754-2008

• Originally written in 1985, this document specifies the
representations of both float and double

• Whether you use C++, FORTRAN, Python, or MATLAB, your
calculations will result in exactly the same result

– Only the quality of your algorithms will affect your outcomes

– Java is not IEEE 754 compliant… 

Kahan and Darcy, How Java’s Floating-Point Hurts Everyone Everywhere

• Some computers internally store approximately 20 decimal digits of
precision for intermediate calculations

– As soon as the number is written to main memory, only 16 decimal
digits are stored…

16
Floating-point primitive data types

Summary

• Following this lesson, you now

– Know floating-point numbers are stored using fixed-precision
scientific notation

– Understand that there are issues—they are not perfect

• In a course on numerical analysis, you will learn to mitigate these
weaknesses

– The float data type is insufficiently precise for most engineering

computation

• Graphics are the one exception…

– Understand that this is defined by the IEEE754 standard

2019-10-09

5

17
Floating-point primitive data types

References

[1] No references?

18
Floating-point primitive data types

Acknowledgements

[1] Zhuo En Dai

19
Floating-point primitive data types

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

20
Floating-point primitive data types

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

